Nemaline Myopathy: What are the risks? What are the tests?

Nemaline Myopathy Convention
October 23, 2004
Toronto, Ontario, Canada

Nicole Dexter, M.S.
Prenatal Diagnostic Unit, Vincent Obstetrics
Massachusetts General Hospital
Boston, Massachusetts, USA

Genetic Counselors

- Explore the impact of genetic disorders on both affected & unaffected family members
- Assist families & individuals as they adjust to the diagnosis and make decisions
- Follow a code of ethics

Code of Ethics

- Autonomy
- Informed Consent
- Confidentiality
- Beneficience (non-maleficience)

(Very Brief) Introduction to NM

- Relatively rare in overall population
 - Estimated at 1/50,000 Finnish births (Wallgren-Pettersson)
- Many cases occur with no family history of NM
- Six forms of NM based on severity of symptoms & age of onset

Genes & NM

Nemaline myopathy can happen in a variety of ways*
 - Sporadic (72/143)
 - Autosomal dominant inheritance (41/143)
 - Autosomal recessive inheritance (29/143)

There are at least 5 genes that, when altered, can cause NM

* Combined data from Boston, Sydney and Nedlands (Ryan, et al., Annals of Neurology 50:312-320, 2001)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Modes of Inheritance</th>
<th>NM Severity</th>
<th>Frequency (very rough!)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEB</td>
<td>AR</td>
<td>Variable</td>
<td>~50%</td>
</tr>
<tr>
<td>ACTA1</td>
<td>AD, AR</td>
<td>Variable</td>
<td>~25%</td>
</tr>
<tr>
<td>TPM2</td>
<td>AR</td>
<td>Variable</td>
<td><5% (2 known)</td>
</tr>
<tr>
<td>TPM3</td>
<td>AD, AR</td>
<td>Variable</td>
<td><5% (4 known)</td>
</tr>
<tr>
<td>TNNT1</td>
<td>AR</td>
<td>Severe</td>
<td><1% (1 known)</td>
</tr>
<tr>
<td>???</td>
<td>AD, AR</td>
<td>Variable</td>
<td>???</td>
</tr>
</tbody>
</table>
Clinical categorization and inheritance patterns of NM patients with ACTA1 mutations*

<table>
<thead>
<tr>
<th>Clinical category</th>
<th>Total NM cases studied</th>
<th>NM cases with ACTA1 mutations</th>
<th>% cases with ACTA1 mutations</th>
<th>No. of ACTA1 mutations by mode of inheritance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sporadic AR AD</td>
</tr>
<tr>
<td>Severe</td>
<td>25</td>
<td>14</td>
<td>56</td>
<td>13 1 0</td>
</tr>
<tr>
<td>Intermediate</td>
<td>23</td>
<td>3</td>
<td>13</td>
<td>3 0 0</td>
</tr>
<tr>
<td>Typical</td>
<td>50</td>
<td>10</td>
<td>20</td>
<td>6 0 4</td>
</tr>
<tr>
<td>Mild/childhood</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Adult onset</td>
<td>3</td>
<td>1</td>
<td>33</td>
<td>1 0 0</td>
</tr>
<tr>
<td>Unknown/other</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Total</td>
<td>109</td>
<td>28</td>
<td>26</td>
<td>23 1 4</td>
</tr>
</tbody>
</table>

What are genes? First a little background...

What are genes?

- Our chromosomes come in pairs, and therefore, so do our genes
- We inherit one pair from each parent
- Each gene is a length of DNA that spells out a specific code for that gene’s function
- If the code is altered, there may be consequences for our development or health

Sporadic Cases

- Caused by a new mutation
- No family history of the condition
- Condition can be caused by one mutation (dominant) or two (recessive)
- About 1/2 of NM cases are sporadic

Autosomal Dominant Inheritance

- One mutation will cause the condition
- Children of an affected parent have 50% chance of being affected
- Can be passed from mother or father
- May be considerable variation in presentation

Autosomal Recessive Inheritance

- Both genes must carry mutation to cause condition
- Carriers are unaffected - no signs or symptoms of disease
- Children of 2 carrier parents have a 1/4 (25%) chance of being affected
- Typically no family history of the condition
Genetic Testing & NM

- Clinical diagnosis of NM still very important
- Genetic testing may still be considered
- Why Pursue Genetic Testing?
 - Establish diagnosis
 - Confirm diagnosis
 - Prenatal diagnosis
 - Implications for other family members

Genetic Testing: Clinical vs. Research

- Clinical testing is done by a CLIA approved lab
- Tests have a specified TAT
- Results are released to patients/physicians for clinical/diagnostic use
- Research testing labs are not CLIA approved
- Testing may not have specified TAT
- Results may or may not be released
- Results must be confirmed by CLIA approved lab for clinical use

Genetic Testing & NM

- Clinical testing available for ACTA1 mutations
 - GeneDX, Maryland USA
 (www.genedx.com)
 - Laing Lab, Nederlands, W. Australia
 - Universita degli Studi di Firenze, Italy
 - ? Orphan disease testing labs

Genetic Testing & NM

- Research testing available for all other genetic forms of NM
 - Children’s Hospital, Boston (Beggs)
 - Univ. Helsinki, Finland (Wallgren-Pettersson)
 - Nedlands, Western Australia (Laing)

The Ins & Outs of Genetic Testing

- Visit a geneticist/genetic counselor
- Testing starts with the affected patient (proband)
- Clinical testing for ACTA1 mutations first
- Samples also sent to research labs for testing of additional genes, known and unknown

The Ins & Outs of Genetic Testing, cont.

- When an autosomal recessive mutation is found:
 - Screen the parents to r/o new mutation
 - If both parents are carriers:
 • 25% chance to have an affected child in each pregnancy
 • Parents’ siblings have 50% chance of being a carrier as well
The Ins & Outs of Genetic Testing, cont.

- When an autosomal dominant mutation is found:
 - Evaluate the parents to r/o inherited mutation
 - Clinical evaluation
 - Genetic testing
 - Muscle biopsy
 - If neither parent is affected/has the same mutation, we may estimate ~1% recurrence risk in future pregnancies to account for possible gonadal mosaicism
 - When a parent has an AD mutation, they have a 50% chance of having an affected child in each pregnancy

Potential Benefits of Genetic Testing

- Establish/confirm diagnosis
 - Other conditions with similar presentations may require very different treatment/management
- Future family planning
- Genetic testing through a research lab may also have other benefits
 - Contributes to general scientific knowledge, understanding of the condition
 - May aide in development of treatments, therapies

The Ins & Outs of Genetic Testing: Prenatal Diagnosis

- Chorionic Villus Sampling (CVS)
 - Done at 10-12 weeks of pregnancy
 - Sample of the placenta taken for genetic testing of the fetal cells
 - Results may take ~4 weeks
 - 1% risk of miscarriage

- Amniocentesis
 - Done 15-20 weeks of pregnancy
 - Genetic testing done on fetal skins cells isolated from amniotic fluid
 - May take ~4 weeks for results
 - 0.5% risk of miscarriage

The Ins & Outs of Genetic Testing: Prenatal Diagnosis

- Preimplantation genetic diagnosis
 - IVF and genetic testing/screening used to only implant pre-embryos (8 cell stage) that do not have NM
 - CVS or amniocentesis performed to verify the diagnosis
Limitations of Genetic Testing

- Time
- Cost
- May find nothing (i.e., “low sensitivity”)
 - Not all genes can currently be effectively screened
 - More genes yet to be found
- More genes yet to be found
- No special treatments/ therapies offered based on a molecular genetic diagnosis of NM
- Risk to fetus for PNDx

Resources

- NM Yahoo! Group (www.nemaline.org)
- David McDougall (www.nemaline.org)
- Local support groups
- Research labs
 - Boston, MA – Beggs Lab (www.childrenshospital.org/research/beggs)
 - Finland
 - Australia
- MDA/MDC
- NSGC (www.nsgc.org) or CAGC (www.cagc-accg.ca/)
 - Find a genetic counselor near you

Acknowledgements

- David McDougall
- NMC04 organizers
- NMF
- Dr. Alan Beggs/ Beggs Lab, Children’s Hospital Boston